Effects of Compression Ratios on Combustion and Emission Characteristics of SI Engine Fueled with Hydrogen-Enriched Biogas Mixture
Quang Trung Nguyen and
Minh Duc Le ()
Additional contact information
Quang Trung Nguyen: Faculty of Transportation Mechanical Engineering, The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Da Nang 550000, Vietnam
Minh Duc Le: Faculty of Transportation Mechanical Engineering, The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Da Nang 550000, Vietnam
Energies, 2022, vol. 15, issue 16, 1-18
Abstract:
The effects of hydrogen-enriched biogas on combustion and emissions of a dual-fuel spark-ignition engine with different hydrogen concentration ratios were studied numerically. A 1-cylinder spark ignition was used to perform a numerical simulation. To reveal the influence of the compression ratios on combustion and emissions of a gaseous engine, the crankshaft of the engine was modified to generate different compression ratios of 8.5, 9.0, 9.4, 10.0, and 10.4. The biogas contained 60 and 40% methane (CH 4 ) and carbon dioxide (CO 2 ), respectively, while the hydrogen fractions used to enrich biogas were 10, 20, and 30% of the mixture by volume. The ignition timing is fixed at 350 CA°. The results indicate that the in-cylinder pressure, combustion temperature, and combustion burning speed increase gradually with increasing hydrogen concentration due to the combustion characteristics of hydrogen in blends. As increasing the compression ratio, NO x emissions increase proportionally, while CO 2 emissions decrease gradually. Almost no combustion process occurs as operating the compression ratio below 8.5 when using pure biogas. However, adding 20% of hydrogen fraction could improve the combustion process significantly even at a low compression ratio.
Keywords: hydrogen-enriched biogas; biogas; NO x emissions; CO 2 emissions; dual-fueled engine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/16/5975/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/16/5975/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:16:p:5975-:d:891115
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().