EconPapers    
Economics at your fingertips  
 

Feedback Control Strategy for Transient Stability Application

Samuel T. Ojetola (), Josh Wold and Daniel Trudnowski
Additional contact information
Samuel T. Ojetola: Sandia National Laboratories, Albuquerque, NM 87123, USA
Josh Wold: Schweitzer Engineering Laboratories, Butte, MT 59701, USA
Daniel Trudnowski: Department of Electrical Engineering, Montana Technological University, Butte, MT 59701, USA

Energies, 2022, vol. 15, issue 16, 1-20

Abstract: Power systems are subjected to a wide range of disturbances during daily operations. Severe disturbances, such as a loss of a large generator, a three-phase bolted fault on a generator bus, or a loss of a transmission line, can lead to the loss of synchronism of a generator or group of generators. The ability of a power system to maintain synchronism during the few seconds after being subjected to a severe disturbance is known as transient stability. Most of the modern methods of controlling transient stability involve special protection schemes or remedial action schemes. These special protection schemes sense predetermined system conditions and take corrective actions, such as generator tripping or generation re-dispatch, in real time to maintain transient stability. Another method is the use of a real-time feedback control system to modulate the output of an actuator in response to a signal. This paper provides a fundamental evaluation of the use of feedback control strategies to improve transient stability in a power system. An optimal feedback control strategy that modulates the real power injected and absorbed by distributed energy-storage devices is proposed. Its performance is evaluated on a four-machine power system and on a 34-machine reduced-order model of the Western North American Power System. The result shows that the feedback control strategy can increase the critical fault clearing time by 60%, thereby improving the transient stability of the power system.

Keywords: power system stability; transient analysis; energy storage; power system control; wide area measurements (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/16/6016/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/16/6016/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:16:p:6016-:d:892519

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6016-:d:892519