Validated Analytical Modeling of Eccentricity and Dynamic Displacement in Diesel Engines with Flexible Crankshaft
Salah A. M. Elmoselhy (),
Waleed F. Faris and
Hesham A. Rakha
Additional contact information
Salah A. M. Elmoselhy: CFisUC, Department of Physics, University of Coimbra, P-3004 516 Coimbra, Portugal
Waleed F. Faris: Department of Mechanical Engineering, International Islamic University Malaysia, Gombak, Kuala Lumpur 53100, Malaysia
Hesham A. Rakha: Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, 3500 Transportation Research Plaza, Blacksburg, VA 24061, USA
Energies, 2022, vol. 15, issue 16, 1-21
Abstract:
In spite of the fact that the flexibility of the crankshaft of diesel engines exhibits notable nonlinearities, analytical modeling of such nonlinearities is not yet realized. The present study thus analytically models the effect of eccentricity on flexible crankshaft and piston secondary motion. The eccentricity of the crankshaft is modeled as the summation of the hydrodynamic eccentricity and the dynamic mass eccentricity of the crankshaft. The study also models the absolute value of the vibrational dynamic displacement of the center of the crankshaft. The paper proves that such dynamic displacement of the center of the crankshaft is sensitive to the changes in its independent variables. It was found that the most influential parameters on the dynamic displacement of the center of the crankshaft due to vibration are the natural frequency and the eccentricity of the crankshaft. The modeling of the dynamic displacement in a flexible crankshaft was validated using a case study based on the eccentricity of the crankshaft showing a relative error of 4%, which is less than the relative error in the CMEM and GT-Power. Furthermore, the analytical modeling of the dynamic displacement in the flexible crankshaft was validated using another case study based on fatigue analysis of the crankshaft showing a relative error of 9%, which is less than that the relative error in Newman’s model of diesel engine fuel consumption and Lansky’s model of diesel engine cylinders. The paper also presents a proposed approach of fatigue failure analysis for vehicular dynamic components and presents a proposed nanostructure of crankshafts for improving such fatigue performance. The developed models would help develop efficient diesel engines and help prolong their service life.
Keywords: analytical modeling; flexible crankshaft; mechanics of materials; fatigue; tribology; diesel engine; sustainability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/16/6083/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/16/6083/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:16:p:6083-:d:894502
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().