EconPapers    
Economics at your fingertips  
 

Large Eddy Simulation of Yawed Wind Turbine Wake Deformation

Hyebin Kim and Sang Lee ()
Additional contact information
Hyebin Kim: Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
Sang Lee: Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea

Energies, 2022, vol. 15, issue 17, 1-12

Abstract: Wind turbine wake redirection drawn by a yaw control has been proposed as a strategy to improve the performance of wind farms. However, the characteristics and the development of the curled wake structure deformed by the yaw action of the rotor are not well understood. In the present study, the structure of the wake behind a wind turbine imparted with various yaw angles subjected to uniform inflow was investigated using large-eddy simulation. The NREL 5MW reference wind turbine was modeled with an actuator disk with rotation to study the deformation process of the curled wake. The source of the vertical asymmetry in the wake deformation was found to be based on the interaction of global wake rotation and a counter-rotating vortex pair induced by the yaw angle. The yaw angle had a profound influence on the distortion of the wake and its trajectory, whose effect was naturally mitigated with downstream distance.

Keywords: wind turbine wake; wake redirection; large-eddy simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/17/6125/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/17/6125/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:17:p:6125-:d:895785

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6125-:d:895785