EconPapers    
Economics at your fingertips  
 

Research on Rock Damage Evolution Based on Fractal Theory-Improved Dynamic Tensile-Compression Damage Model

Hengyu Su (), Ziyi Wang and Shu Ma
Additional contact information
Hengyu Su: School of Architectural Engineering, Guizhou University for Nationalities, Guiyang 550025, China
Ziyi Wang: School of Mining, Guizhou University, Guiyang 550025, China
Shu Ma: School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

Energies, 2022, vol. 15, issue 17, 1-17

Abstract: According to the characteristics that the dynamic tension of rock material is elastic brittle and the dynamic compression is elastic plastic, based on previous studies, the influence of initial damage is considered in the established compression damage model, and the calculation formula of the damage threshold used to evaluate whether the surrounding rock is affected by blasting is given. According to the classic rock impact dynamic damage model and statistical damage mechanics theory, a rock compressive and tensile statistical damage constitutive model and impact damage model under blasting load is proposed. Based on the proposed damage model and the classic dynamic tensile damage model, the numerical simulation of blasting damage was carried out, and the numerical calculation results were compared with the field measurement results. Based on the established damage model, to further clarify the damage evolution characteristics of rock under blasting load, fractal dimension theory was introduced to analyze the rock damage under blasting loads with different blasting hole network parameters. The results show that compared with the axial direction of the blast hole, the direction of blast hole diameter is the main direction of blasting fracture extension. Tensile fracture mainly occurs along the hole diameter direction, and compression fracture mainly occurs below the hole bottom. Compared with the numerical calculation results based on the classical dynamic tensile damage model, the blasting fracture range obtained according to the damage model, especially the fracture depth below the bottom of the hole, was not much different from the measured value and was closest to the measured value. The crack density of 1 us, 90 aperture, and 130 aperture was larger than that of the other working conditions. Among them, the crack density of 130 aperture was the largest, followed by 90 aperture. At 2~3 us after initiation, cracks between two blast holes, radial cracks and circumferential cracks around two blast holes, and obvious cracks were formed around blastholes; at 4~5 us after initiation, the shock wave front decreased rapidly and propagated outward in the form of the compression wave. The crack propagation velocity was much smaller than that at 1~3 us after initiation. In summary, the proposed damage model is reasonable and has certain engineering practicability.

Keywords: damage model; blasting load; tension and compression damage; fractal dimension (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/17/6194/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/17/6194/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:17:p:6194-:d:897915

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6194-:d:897915