EconPapers    
Economics at your fingertips  
 

Experiment and Application of Wax Deposition in Dabei Deep Condensate Gas Wells with High Pressure

Lihu Cao, Jinsheng Sun (), Jianyi Liu and Jiquan Liu
Additional contact information
Lihu Cao: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Jinsheng Sun: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Jianyi Liu: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
Jiquan Liu: PetroChina Tarim Oilfield Company, Korla 841000, China

Energies, 2022, vol. 15, issue 17, 1-14

Abstract: The Dabei deep high-pressure condensate gas field occupies the paramount position in the Tarim Oilfield in China, the exploration and developments of which have been progressing. Since the initial development, the wax deposition and plugging in the wellbore and gathering pipeline have been the most bothering issues, resulting in the reduction or even shutdown of condensate gas well production. Therefore, the wax appearance temperature of Dabei condensate oil was studied using the capillary viscometer, differential scanning calorimetry (DSC), and polarizing microscope observation. The wax content was tested by using the DSC and crystallization separation test method. Finally, the wax appearance temperatures of degassed condensate oil and equilibrium condensate oil under different pressures were tested. Experimental results show that the wax appearance temperature measured by polarizing microscope observation was higher than that measured by the DSC and capillary viscometer, the lag of which can be recorded as the cloud point. The wax appearance temperature measured by polarizing microscope observation is of high accuracy. Secondly, the DSC method is not sufficient for measuring wax precipitation at low temperatures, showing a lower wax content than the crystallization separation test method. Thus, the wax content of Dabei condensate oil can be better measured by using the crystallization separation test method. Additionally, the wax precipitation law of equilibrium condensate oil is opposite to that of degassed condensate oil. The wax appearance temperature of equilibrium condensate oil increases as the pressure decreases. The results of wax appearance temperature of equilibrium condensate oil provide a useful and quick index to judge the potential risk of wax precipitation in the Tarim Oilfield, which can provide an efficient strategy for the development of waxy condensate gas reservoirs and the optimization of wax prevention and treatment technology.

Keywords: waxy condensate oil; wax appearance temperature; wax content; equilibrium condensate oil (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/17/6200/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/17/6200/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:17:p:6200-:d:898041

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6200-:d:898041