EconPapers    
Economics at your fingertips  
 

Effects of Loading Level on the Variation of Flow Losses in Subsonic Axial Compressors

Ruoyu Wang, Xianjun Yu (), Baojie Liu and Guangfeng An
Additional contact information
Ruoyu Wang: Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
Xianjun Yu: Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
Baojie Liu: Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
Guangfeng An: Research Institute of Aero-Engine, Beihang University, Beijing 100191, China

Energies, 2022, vol. 15, issue 17, 1-21

Abstract: The development of the aircraft industry seeks an increase in compressor loading, bringing unique flow phenomena and design problems; thus, insights into the ultrahigh loaded compressor are in great need. To reveal the loss characteristics of the ultrahigh loaded subsonic axial compressors, four well comparable compressor stages are carefully designed with the loading coefficient varying from 0.41 to 0.65. A novel flow-based loss decomposition method is performed to investigate the variation of different kinds of losses (including blade profile loss, tip leakage loss, casing endwall loss, and hub endwall loss) with the change in compressor loading level and operating condition. Results show that the blade profile loss always occupies the largest part of the total loss. In rotor passages, the percentage of the blade profile loss at the design point is increased from 69% to 76% with the increase in the compressor loading. Meanwhile, the proportion of the tip leakage loss decreases as the loading increases. For a specific compressor stage, the total loss of the rotor passage tends to increase with the increase in stage pressure rise coefficient along the operation line, whereas the proportion of the blade profile loss is squeezed by the tip leakage loss. As for stator passages, the proportion of blade profile loss to the total passage loss is nearly constant along the compressor operating line, but increases from 79% to 90% with the increase in the compressor loading level. By correlating the losses with blade solidity, it was found that the increase in flow losses in the highly loaded compressor, i.e., the decrease in efficiency, stems mainly from the high blade solidity.

Keywords: loss decomposition; tip leakage loss; blade profile loss; endwall loss; ultrahigh loaded compressor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/17/6251/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/17/6251/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:17:p:6251-:d:899309

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6251-:d:899309