EconPapers    
Economics at your fingertips  
 

A Fault Detection Method Based on CNN and Symmetrized Dot Pattern for PV Modules

Meng-Hui Wang, Zong-Han Lin and Shiue- Der Lu ()
Additional contact information
Meng-Hui Wang: Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
Zong-Han Lin: Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
Shiue- Der Lu: Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan

Energies, 2022, vol. 15, issue 17, 1-17

Abstract: The photovoltaic (PV) module is a key technological advancement in renewable energy. When the PV modules fail, the overall generating efficiency will decrease, and the power system’s operation will be influenced. Hence, detecting the fault type when the PV modules are failing becomes important. This study proposed a hybrid algorithm by combining the symmetrized dot pattern (SDP) with a convolutional neural network (CNN) for PV module fault recognition. Three common faults are discussed, including poor welding, breakage, and bypass diode failure. Moreover, a fault-free module was added to the experiment for comparison. First, a high-frequency square signal was imported into the PV module, and the original signal was captured by the NI PXI-5105 high-speed data acquisition (DAQ) card for the hardware architecture. Afterward, the signal was imported into the SDP for calculation to create a snowflake image as the image feature for fault diagnosis. Finally, the PV module fault recognition was performed using CNN. There were 3200 test data records in this study, and 800 data records (200 data records of each fault) were used as test samples. The test results show that the recognition accuracy was as high as 99.88%. It is better than the traditional ENN algorithm, having an accuracy of 91.75%. Therefore, while capturing the fault signals effectively and displaying them in images, the proposed method accurately recognizes the PV modules’ fault types.

Keywords: photovoltaic module; symmetrized dot pattern; convolutional neural network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/17/6449/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/17/6449/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:17:p:6449-:d:906158

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6449-:d:906158