Experimental Study on the Compressive and Shear Mechanical Properties of Cement–Formation Interface Considering Surface Roughness and Drilling Mud Contamination
Lei Wang,
Bohang Liu (),
Hanzhi Yang,
Yintong Guo,
Jing Li and
Hejuan Liu
Additional contact information
Lei Wang: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
Bohang Liu: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
Hanzhi Yang: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
Yintong Guo: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
Jing Li: School of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
Hejuan Liu: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
Energies, 2022, vol. 15, issue 17, 1-17
Abstract:
In a casing-cement sheath-formation system, the cement–formation interface is usually weakly cemented for the residual of drilling mud, in which a leakage path would easily form, threatening the safe operation of underground energy exploitation and storage. To evaluate the compressive and shear mechanical behavior of the cement–formation interface, cement–rock composite cylindrical specimens were prepared. Uniaxial and triaxial compression and direct shear tests were implemented. The flushing efficiency of the rock surface, compressive strength, interface incompatible deformation, parameters of shear strength, and morphology of shear failure surface were acquired and analyzed. Results show that the flushing efficiency of shale surface decreases from 76.7% to 64.2% with the surface roughness increasing from 0 to 2 mm. The flushing efficiency of sandstone is only 44.7%, remarkably lower than that of shale. With the stress condition transforming from uniaxial to triaxial compression, the feature of the stress–strain curves changes from elastic-brittle to elastoplastic, and the compressive strength increases from 20.6~60.1 MPa to 110~120 MPa. The cement part presents noteworthy plastic deformation and several micro shear fractures develop. There is incompatible deformation between cement and rock, which induces interface debonding for almost all the composite specimens. The internal friction angle and cohesive strength both decrease with the increase in pollution degree of drilling mud, and increase with the rise in surface roughness. The shear facture surface is not exactly the rock–cement interface, but usually manifests as a shear zone, in which the rock, cement, and interface all contribute to the final shear failure. The above findings would be valuable for the revealing of cement–formation interface failure mechanism.
Keywords: cement–rock interface; drilling mud pollution; flushing efficiency; compressive strength; incompatible deformation; interface shear parameters (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/17/6472/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/17/6472/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:17:p:6472-:d:906907
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().