Multi-Objective Optimization via GA Based on Micro Laser Line Scanning Data for Micro-Scale Surface Modeling
J. Apolinar Muñoz Rodríguez ()
Additional contact information
J. Apolinar Muñoz Rodríguez: Centro de Investigaciones en Óptica, A. C., Lomas del Bosque 115, Col. Comas del Campestre, Leon 37000, GTO, Mexico
Energies, 2022, vol. 15, issue 18, 1-23
Abstract:
Industry 4.0 represents high-level methodologies to make intelligent, autonomous, and self-adaptable manufacturing systems. Additionally, the surface modeling technology has become a great tool in industry 4.0 for representing the surface point cloud. Thus, the micro-scale machining technology requires efficient models to represent micro-scale flat and free-form surfaces. Therefore, it is fundamental to perform surface modeling through artificial intelligence for representing small surfaces. This study addressed multi-objective optimization via genetic algorithms and micro laser line projection to accomplish surface models for representing micro-scale flat and free-form surfaces, where an optical microscope system retrieves micro-scale topography via micro laser line coordinates and the multi-objective optimization constructs the flat and free-form surface models through genetic algorithms and micro-scale topography. The multi-objective optimization determines the surface model parameters through exploration and exploitation, and the solution space is deduced via surface data. The surface model generated through the multi-objective optimization fit accurately to the micro-scale target surface. Thus, the proposed technique enhanced the fitting of micro-scale flat and free-form surface models, which were deduced via gray-level images of an optical microscope. This enhancement was validated by a discussion between the multi-objective optimization via genetic algorithms and the micro-scale surface modeling via optical microscope imaging systems.
Keywords: micro-scale surface modeling; micro laser line contouring; multi-objective optimization; optical microscope imaging (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/18/6571/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/18/6571/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:18:p:6571-:d:909973
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().