Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review
Yalin Wang,
Yi Ding and
Yi Yin ()
Additional contact information
Yalin Wang: Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai 200240, China
Yi Ding: Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai 200240, China
Yi Yin: Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai 200240, China
Energies, 2022, vol. 15, issue 18, 1-23
Abstract:
Wide band gap (WBG) power electronic devices, such as silicon carbide metal–oxide–semiconductor field-effect transistors (SiC MOSFETs) and gallium–nitride high-electron-mobility transistors (GaN HEMTs) have been widely used in various fields and occupied a certain share of the market with rapid momentum, owing to their excellent electrical, mechanical, and thermal properties. The reliability of WBG power electronic devices is inseparable from the reliability of power electronic systems and is a significant concern for the industry and for academia. This review attempts to summarize the recent progress in the failure mechanisms of WBG power electronic semiconductor chips, the reliability of WBG power electronic packaging, and the reliability models for predicting the remaining life of WBG devices. Firstly, the typical structures and dominant failure mechanisms of SiC MOSFETs and GaN HEMTs are discussed. This is followed by a description of power electronic packaging failure mechanisms and available packaging materials for WBG power electronic devices. In addition, the reliability models based on physics-of-failure (including time-dependent dielectric breakdown models, stress–strain models, and thermal cycling models), and data-driven models are introduced. This review may provide useful references for the reliability research of WBG power devices.
Keywords: wideband gap semiconductor; reliability; packaging insulation; SiC; GaN (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/18/6670/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/18/6670/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:18:p:6670-:d:913210
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().