Evaluation of Energy-Saving and Improvement of the Thermal Environment of the House with High Thermal Insulation, Heat Storage Performance, and Fitting Adjustment
Yo Uehara and
Tomoko Uno ()
Additional contact information
Yo Uehara: Graduate School of Architecture, Mukogawa Women’s University, Nishinomiya 663-8121, Japan
Tomoko Uno: Graduate School of Architecture, Mukogawa Women’s University, Nishinomiya 663-8121, Japan
Energies, 2022, vol. 15, issue 18, 1-11
Abstract:
In this study, we assessed a lifestyle in which occupants adjust the fittings based on climate, weather, and time, in terms of energy efficiency and thermal conditions. The proposed solution is a Zero Energy House (ZEH) with high thermal performance. The thermal performance of the building envelope can be adjusted by changing the operation of fittings based on the indoor and outdoor environments, as well as air conditioning usage. Many studies have achieved zero energy by increasing the thermal performance of an envelope and using highly efficient energy-saving facilities; however, uniquely, here we focus on occupant behavior to change the building envelope condition. In this paper, numerical analysis was used to investigate the effect of adjusting the fittings on buildings with different thermal performances of the envelope. The analysis demonstrates that, while more research into measures is needed in the summer, the adjustment of fittings and thermal storage properties in the winter season can reduce the heating load by 48–59% compared to the normal ZEH and improve the indoor environment. In terms of the heating and cooling load throughout the year, the results also showed that applying fittings adjustment and heat storage to an ordinary house can provide nearly the same energy-saving effect as a highly insulated house.
Keywords: Zero Energy House; fitting adjustment; thermal environment; air conditioning load; skylight; thermal storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/18/6728/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/18/6728/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:18:p:6728-:d:915054
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().