The Policy Choice and Economic Assessment of High Emissions Industries to Achieve the Carbon Peak Target under Energy Shortage—A Case Study of Guangdong Province
Songyan Ren,
Peng Wang (),
Zewei Lin and
Daiqing Zhao
Additional contact information
Songyan Ren: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Peng Wang: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Zewei Lin: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Daiqing Zhao: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Energies, 2022, vol. 15, issue 18, 1-22
Abstract:
In recent years, due to the rise in energy prices and the impact of COVID-19, energy shortages have led to unsafe power supply environments. High emissions industries which account for more than 58% of the carbon emissions of Guangdong Province have played an important role in achieving the carbon peak goal, alleviating social energy shortage and promoting economic growth. Controlling high emissions industries will help to adjust the industrial structure and increase renewable energy investment. Therefore, it is necessary to comprehensively evaluate the policies of energy security and the investments of high emission industries. This paper builds the ICEEH-GD (comprehensive assessment model of climate, economy, environment and health of Guangdong Province) model, designs the Energy Security scenario (ES), the Restrict High Carbon Emission Sector scenario (RHS) and the Comprehensive Policy scenario (CP), and studies the impact of limiting high emissions industries and renewable energy policies on the transformation of investment structure, macro-economy and society. The results show that under the Energy Security scenario (ES), carbon emissions will peak in 2029, with a peak of 681 million tons. Under the condition of ensuring energy security, the installed capacity of coal-fired power generation will remain unchanged from 2025 to 2035. Under the Restrict High Carbon Emission Sector scenario (RHS), the GDP will increase by 8 billion yuan compared with the ES scenario by 2035. At the same time, it can promote the whole society to increase 10,500 employment opportunities, and more investment will flow to the low emissions industries. In the Comprehensive Policy scenario (CP), although the GDP loss will reach 33 billion yuan by 2035 compared with the Energy Security scenario (ES), the transportation and service industries will participate in carbon trading by optimizing the distribution of carbon restrictions in the whole society, which will reduce the carbon cost of the whole society by more than 48%, and promote the employment growth of 104,000 people through industrial structure optimization. Therefore, the power sector should increase investment in renewable energy to ensure energy security, limit the new production capacity of high emissions industries such as cement, steel and ceramics, and increase the green transition and efficiency improvement of existing high emissions industries.
Keywords: CGE; Guangdong; renewable; carbon peak; energy safety; economic impact (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/18/6750/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/18/6750/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:18:p:6750-:d:915785
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().