Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine
Issam Bahadur ()
Additional contact information
Issam Bahadur: Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat P.O. Box 123, Oman
Energies, 2022, vol. 15, issue 18, 1-18
Abstract:
This paper investigates the dynamics of an electromagnetic vortex bladeless wind turbine (VBWT) with a tunable mechanism. The tunable mechanism comprises a progressive-rate spring that is attached to an oscillating magnet inside an electromagnetic coil. The spring stiffness is progressively adjusted as the wind speed changes to tune the turbine fundamental frequency to match the shedding frequency of the vortex-induced vibration (VIV) due to the wind flow crossing over the oscillating mast. Coupled nonlinear equations of motion of the tunable turbine are developed using the lumped-mass representation and Lagrange formulation. Numerical results show that the tunable turbine performs effectively beyond a threshold wind speed. An analytical expression of the threshold speed is derived based on the mechanical fundamental frequency of the turbine. The analytical results are in reasonable agreement with the numerical evaluations. At a given wind speed past the threshold, the tunable turbine has an optimum spring stiffness at which the output power is maximum. Numerical studies also show that the output power of the 2 m long tunable turbine is tens of times larger in comparison to a conventional bladeless turbine. For example, at a wind speed of 4.22 m/s, the output rms power of the tunable turbine is around 1105 mW versus 17 mW of the conventional VBWT. The power can be further maximized at an optimum external load. This research work demonstrated the feasibility and merits of the proposed tunable mechanism to enhance the overall performance of the bladeless wind turbine.
Keywords: electromagnetic; bladeless wind turbine; tunable; energy harvester; vortex-induced vibration; spring–pendulum system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/18/6773/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/18/6773/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:18:p:6773-:d:916872
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().