Transient Analysis of a Solar Chimney Power Plant Integrated with a Solid-Sorption Cooling System for Combined Power and Chilled Water Production
Hassan Zohair Hassan ()
Additional contact information
Hassan Zohair Hassan: Department of Mechanical Engineering, College of Engineering, Alfaisal University, Takhassusi St., Al Maather Road, P.O. Box 50927, Riyadh 11533, Saudi Arabia
Energies, 2022, vol. 15, issue 18, 1-20
Abstract:
Solar radiation is a reliable energy source that can be used to produce power and cold. Converting solar energy into electricity is attainable through solar chimney power plants. Moreover, solar energy has been utilized to produce cold in adsorption cooling systems. In the adsorption cooling cycle, the adsorption bed releases heat into the environment during the bed cooling phases. This paper introduces a novel hybrid solar chimney power plant integrated with a solar-driven adsorption water chiller. The purpose of the presented system is to enhance the system’s utilization of solar energy by recovering the reactor’s released heat and reusing it to augment the output power. In comparison with conventional solar chimney power plants, the introduced system produces continuous power throughout the day. A mathematical model is developed to evaluate the system’s performance. This model expresses the conservation of energy and mass for every component in the system. The silica gel and water adsorption pair is used in the simulation of the water chiller. It has been found that 62.6% of the adsorption reactor driving heat can be recycled. Therefore, a turbine power increase of 3.22% is obtained with a solar-to-electricity conversion efficiency of 0.4%.
Keywords: solar chimney; adsorption cooling; solar collector; power generation; dynamic analysis; cold production; water chiller (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/18/6793/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/18/6793/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:18:p:6793-:d:917207
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().