EconPapers    
Economics at your fingertips  
 

On the Monotonicity and Positivity of Physics-Informed Neural Networks for Highly Anisotropic Diffusion Equations

Wenjuan Zhang and Mohammed Al Kobaisi ()
Additional contact information
Wenjuan Zhang: Department of Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
Mohammed Al Kobaisi: Department of Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates

Energies, 2022, vol. 15, issue 18, 1-18

Abstract: Physics-informed neural network (PINN) models are developed in this work for solving highly anisotropic diffusion equations. Compared to traditional numerical discretization schemes such as the finite volume method and finite element method, PINN models are meshless and, therefore, have the advantage of imposing no constraint on the orientations of the diffusion tensors or the grid orthogonality conditions. To impose solution positivity, we tested PINN models with positivity-preserving activation functions for the last layer and found that the accuracy of the corresponding PINN solutions is quite poor compared to the vanilla PINN model. Therefore, to improve the monotonicity properties of PINN models, we propose a new loss function that incorporates additional terms which penalize negative solutions, in addition to the usual partial differential equation (PDE) residuals and boundary mismatch. Various numerical experiments show that the PINN models can accurately capture the tensorial effect of the diffusion tensor, and the PINN model utilizing the new loss function can reduce the degree of violations of monotonicity and improve the accuracy of solutions compared to the vanilla PINN model, while the computational expenses remain comparable. Moreover, we further developed PINN models that are composed of multiple neural networks to deal with discontinuous diffusion tensors. Pressure and flux continuity conditions on the discontinuity line are used to stitch the multiple networks into a single model by adding another loss term in the loss function. The resulting PINN models were shown to successfully solve the diffusion equation when the principal directions of the diffusion tensor change abruptly across the discontinuity line. The results demonstrate that the PINN models represent an attractive option for solving difficult anisotropic diffusion problems compared to traditional numerical discretization methods.

Keywords: subsurface flow; porous media; permeability anisotropy; diffusion equation; physics informed neural networks; monotonicity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/18/6823/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/18/6823/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:18:p:6823-:d:918095

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6823-:d:918095