EconPapers    
Economics at your fingertips  
 

Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation

Wojciech Dziemianowicz (), Katarzyna Kotarska and Anna Świerczyńska
Additional contact information
Wojciech Dziemianowicz: Department of Distillery Technology and Renewable Energy, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, Powstańców Wielkopolskich 17, 85-090 Bydgoszcz, Poland
Katarzyna Kotarska: Department of Distillery Technology and Renewable Energy, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, Powstańców Wielkopolskich 17, 85-090 Bydgoszcz, Poland
Anna Świerczyńska: Department of Distillery Technology and Renewable Energy, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, Powstańców Wielkopolskich 17, 85-090 Bydgoszcz, Poland

Energies, 2022, vol. 15, issue 19, 1-14

Abstract: In this study, two types of fermentation methods: SSF and consolidation SHF/SSF were used for production of acetone-butanol-ethanol (ABE) from corn straw as a feedstock. Clostridium acetobutylicum DSM1731 was used as the fermenting organism. Corn straw was thermochemically pretreated and then hydrolyzed using three types of enzymes. The impact has been investigated on the effect of mineral compounds supplementation ((NH 4 ) 2 SO 4 , MgSO 4 , (NH 4 ) 3 PO 4 ) on ABE productivity and butanol content. From the SSF, where mineral salts were supplemented into the fermentation medium, it was found that the maximum ABE and butanol concentrations were 28.35 g/L and 24.03 g/L, respectively, corresponding to a productivities of 0.295 g/L/h (ABE) and 0.250 g/L/h (butanol). In the consolidation SHF/SSF method with mineral compounds supplementation, the maximum ABE and butanol concentrations were 31.35 g/L and 28.64 g/L, respectively, corresponding to productivities of 0.327 g/L/h (ABE) and 0.298 g/L/h (butanol). Compared to control samples, mineral salts supplementation had a positive effect on cellular metabolic activities, leading to an earlier initiation of the solventogenesis stage. In supplemented samples, an increase in the rate of ABE fermentation by Clostridium was observed.

Keywords: lignocellulosic biomass; biofuels; enzymatic hydrolysis; ABE fermentation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/6899/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/6899/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:6899-:d:920465

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6899-:d:920465