EconPapers    
Economics at your fingertips  
 

Non-Invasive Detection of Lithium-Metal Battery Degradation

Pietro Iurilli (), Luigi Luppi and Claudio Brivio
Additional contact information
Pietro Iurilli: Sustainable Energy Center, CSEM, 2002 Neuchâtel, Switzerland
Luigi Luppi: Sustainable Energy Center, CSEM, 2002 Neuchâtel, Switzerland
Claudio Brivio: Department of Energy, Politecnico di Milano, 20156 Milano, Italy

Energies, 2022, vol. 15, issue 19, 1-14

Abstract: The application of Lithium Metal Batteries (LMBs) as secondary cells is still limited due to dendrite degradation mechanisms arising with cycling and responsible for safety risk and early cell failure. Studies to prevent and suppress dendritic growth using state-of-the-art materials are in continuous development. Specific detection techniques can be applied to verify the internal condition of new LMB chemistries through cycling tests. In this work, six non-invasive and BMS-triggerable detection techniques are investigated to anticipate LMB failures and to lay the basis for innovative self-healing mechanisms. The novel methodology is based on: (i) defining detection parameters to track the evolution of cell aging, (ii) defining a detection algorithm and applying it to cycling data, and (iii) validating the algorithm in its capability to detect failure. The proposed methodology is applied to Li||NMC pouch cells. The main outcomes of the work include the characterization results of the tested LMBs under different cycling conditions, the detection techniques performance evaluation, and a sensitivity analysis to identify the most performing parameter and its activation threshold.

Keywords: lithium metal batteries; dendrites; detection technique; self-healing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/6904/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/6904/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:6904-:d:920566

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6904-:d:920566