High Performance 3.3 kV SiC MOSFET Structure with Built-In MOS-Channel Diode
Jaeyeop Na,
Minju Kim and
Kwangsoo Kim ()
Additional contact information
Jaeyeop Na: Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
Minju Kim: Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
Kwangsoo Kim: Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
Energies, 2022, vol. 15, issue 19, 1-13
Abstract:
Built-in freewheeling diode metal–oxide–semiconductor field-effect transistors (MOSFETs) that ensure high performance and reliability at high voltages are crucial for chip integration. In this study, a 4H–SiC built-in MOS-channel diode MOSFET with a center P+ implanted structure (CIMCD–MOSFET) is proposed and simulated via technology computer-aided design (TCAD). The CIMCD–MOSFET contains a P+ center implant region, which protects the gate oxide edge from high electric field crowding. Moreover, the region also makes it possible to increase the junction FET (JFET) and N-drift doping concentration of the device by dispersing the high electric field. Consequently, the CIMCD–MOSFET is stable even at a high voltage of 3.3 kV without static degradation and gate oxide reliability issues. The CIMCD–MOSFET also has higher short-circuit withstanding capability owing to the low saturation current and improved switching characteristics due to the low gate-drain capacitance, compared to the conventional MOSFET (C–DMOSFET) and the built-in Schottky barrier diode MOSFET (SBD–MOSFET). The total switching time of a CIMCD–MOSFET is reduced by 52.2% and 42.2%, and the total switching loss is reduced by 67.8% and 41.8%, respectively, compared to the C–DMOSFET and SBD–MOSFET.
Keywords: body diode; high breakdown voltage; high reliability; MOS-channel diode; reverse recovery; silicon carbide; switching loss (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/6960/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/6960/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:6960-:d:922551
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().