EconPapers    
Economics at your fingertips  
 

High Performance 3.3 kV SiC MOSFET Structure with Built-In MOS-Channel Diode

Jaeyeop Na, Minju Kim and Kwangsoo Kim ()
Additional contact information
Jaeyeop Na: Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
Minju Kim: Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
Kwangsoo Kim: Department of Electronic Engineering, Sogang University, Seoul 04107, Korea

Energies, 2022, vol. 15, issue 19, 1-13

Abstract: Built-in freewheeling diode metal–oxide–semiconductor field-effect transistors (MOSFETs) that ensure high performance and reliability at high voltages are crucial for chip integration. In this study, a 4H–SiC built-in MOS-channel diode MOSFET with a center P+ implanted structure (CIMCD–MOSFET) is proposed and simulated via technology computer-aided design (TCAD). The CIMCD–MOSFET contains a P+ center implant region, which protects the gate oxide edge from high electric field crowding. Moreover, the region also makes it possible to increase the junction FET (JFET) and N-drift doping concentration of the device by dispersing the high electric field. Consequently, the CIMCD–MOSFET is stable even at a high voltage of 3.3 kV without static degradation and gate oxide reliability issues. The CIMCD–MOSFET also has higher short-circuit withstanding capability owing to the low saturation current and improved switching characteristics due to the low gate-drain capacitance, compared to the conventional MOSFET (C–DMOSFET) and the built-in Schottky barrier diode MOSFET (SBD–MOSFET). The total switching time of a CIMCD–MOSFET is reduced by 52.2% and 42.2%, and the total switching loss is reduced by 67.8% and 41.8%, respectively, compared to the C–DMOSFET and SBD–MOSFET.

Keywords: body diode; high breakdown voltage; high reliability; MOS-channel diode; reverse recovery; silicon carbide; switching loss (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/6960/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/6960/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:6960-:d:922551

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6960-:d:922551