EconPapers    
Economics at your fingertips  
 

Wellbore Stabilization Technology of “Fluid-Solid-Chemical Coupling” in Continental Shale Oil—A Case Study of Shale Oil in Block GL

Xin Ai () and Mian Chen
Additional contact information
Xin Ai: College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
Mian Chen: College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China

Energies, 2022, vol. 15, issue 19, 1-16

Abstract: During the oil shale drilling in Group Q of Block GL, the shale is prone to hydration, deterioration, sidewall exfoliation and frequent collapse, which affects the efficient exploration and development of shale oil. In order to reveal the mechanism of wellbore instability in the shale formation, the tectonic characteristics of shale are studied by combining microscopic and macroscopic methods, which identifies three key factors of physics, chemistry and mechanics about wellbore instability. Based on the analysis of earth stress and rock mechanics parameters, the experiment has established the prediction model of “fluid-solid-chemical coupling” collapse pressure of shale formation in Group Q, and calculated the safe drilling fluid density window for the horizontal wells of shale oil in Block GL by the prediction model. The main factors of wellbore instability in shale formation, deterioration characteristics and high density of oil-based drilling fluid on the well site is combined. The targeted plugging anti-sloughing and strong wetting agent were developed by using laser particle size instruments and pressure transmission experiments. A high thixotropy and strong plugging oil-based drilling fluid system is formed. The research results have been successfully applied in 16 horizontal wells of the shale oil test platform. The excellent rheological property, reliable plugging and bearing capacity and outstanding wellbore stabilization effect provides technical support for high-quality and efficient exploration and development of shale oil in Block GL. The “fluid-solid-chemical coupling” wellbore stabilization technology of continental shale oil formed in this study can provide a reference for the exploration and development of similar types of shale oil and gas reservoirs.

Keywords: shale oil; wellbore stability; “fluid-solid-chemical” coupling model; oil-based drilling fluid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/6962/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/6962/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:6962-:d:922653

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6962-:d:922653