EconPapers    
Economics at your fingertips  
 

Boiling Heat Transfer during Flow in Vertical Mini-Channels with a Modified Heated Surface

Magdalena Piasecka and Kinga Strąk
Additional contact information
Magdalena Piasecka: Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland
Kinga Strąk: Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland

Energies, 2022, vol. 15, issue 19, 1-26

Abstract: The process with change of phase during flow in mini-channels plays a significant role in many industrial applications, such as microelectronics. Furthermore, methods for heat transfer intensification during flow in channels of small cross-section are still being sought. In this work, studies of the effect of using a modified heated surface on intensification boiling heat transfer in rectangular mini-channels during upward and downward flow are performed. The test section of a group of seven parallel mini-channels 1 mm deep was investigated during the subcooled and saturated flow boiling of FC-72. The temperature of the outer heated wall surface was measured using an infrared camera. During the experiments, two-phase flow structures were captured with a quick camera. Local heat transfer coefficients at the contact surface between the working fluid and the heated surface were determined with the use of a one-dimensional calculation method. To present the results, local temperature measurements and heat transfer coefficients, boiling curves and two-phase flow patterns are shown and analyzed. The results concerning two directions of vertical flow along mini-channels are discussed. Several modified heated surfaces and one smooth were tested for comparison. The main objective was to find out how the modified surface of the heated wall can intensify boiling heat transfer with upward and downward refrigerant flow in mini-channels of rectangular cross-section.

Keywords: mini-channel; flow boiling; modified heated surface; heat transfer intensification; two-phase flow structures (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/7050/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/7050/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:7050-:d:925097

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7050-:d:925097