EconPapers    
Economics at your fingertips  
 

A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance

Anita Šalić and Bruno Zelić ()
Additional contact information
Anita Šalić: Department of Thermodynamics, Mechanical Engineering and Energy, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
Bruno Zelić: Department of Reaction Engineering and Catalysis, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia

Energies, 2022, vol. 15, issue 19, 1-22

Abstract: One of the approaches widely used today to intensify processes is their miniaturization. Small, compact, portable devices that can be used directly in the field will become popular in the near future. The use of microstructured devices is becoming more widespread in diagnostics, analytics, and production, so there is no doubt that the same approach is being applied to energy production. The question is whether it is possible to create an energy production system that has all the external characteristics of a miniaturized device but is sustainable, durable, environmentally friendly, based on renewable sources, and cost-effective. The first challenge is to choose a production route, an energy source that has the required characteristics, and then to adapt this production on a microscale. Among the different energy sources, biohydrogen meets most of the requirements. The carbon emissions of biohydrogen are much lower, and its production is less energy-intensive than conventional hydrogen production. Moreover, it can be produced from renewable energy sources. The challenge today is to make this process sustainable due to the low substrate conversion, production rate, and yield. Microfluidic systems are one of the technologies that could address the above shortcomings of the current biohydrogen production processes. The combination of microdevices and biohydrogen production opens up new possibilities for energy production. Although this area of research is growing, the focus of this review is on the possibility of using microfluidics for biohydrogen production.

Keywords: microfluidics; biohydrogen; sustainably; environmentally friendly; renewable processes (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/7065/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/7065/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:7065-:d:925688

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7065-:d:925688