ULP Super Regenerative Transmitter with Digital Quenching Signal Controller
Somaya Kayed,
Sherif Saleh and
Heba Shawkey ()
Additional contact information
Somaya Kayed: Obour High Institute for Engineering and Technology, Obour 3036, Egypt
Sherif Saleh: Electronics Research Institute, Cairo 11843, Egypt
Heba Shawkey: Electronics Research Institute, Cairo 11843, Egypt
Energies, 2022, vol. 15, issue 19, 1-16
Abstract:
This paper demonstrates an on–off keying (OOK) super-regenerative quenching transmitter operating in 402–405 MHz MICs band applications. To reduce power consumption, the transmitter is controlled by a novel digital quenching signal controller that generates a digital control signal to start transmitter operation when a baseband signal is input to the transmitter. The digital signal controller consists of an envelope detector, a comparator, and a quench timer designed using a state machine to synchronize the operation between the digital controller and the input baseband signal. The transmitter consists of a Colpitts oscillator operating in double operating frequency followed by a frequency divider by 2; this configuration reduces system area and improves phase noise and signal spectrum. The proposed transmitter is implemented using UMC 130 nm CMOS technology and a 1.2 V supply. Simulation shows that the proposed transmitter can meet MICS band mask specifications with data rates up to 1 Mbps and total power dissipation of 537 uW.
Keywords: quenching transmitter; super-regenerative transceiver; MICS band; quenching signal controller; Colpitts oscillator; TSPC divider (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/7123/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/7123/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:7123-:d:928156
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().