Experimental Study of Proppant Placement Characteristics in Curving Fractures
Zhiying Wu,
Chunfang Wu and
Linbo Zhou ()
Additional contact information
Zhiying Wu: State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China
Chunfang Wu: State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China
Linbo Zhou: State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China
Energies, 2022, vol. 15, issue 19, 1-16
Abstract:
Proppant placement in hydraulic fractures is crucial for avoiding fracture closure and maintaining a high conductivity pathway for oil and gas flow from the reservoir. The curving fracture is the primary fracture form in formation and affects proppant–fluid flow. This work experimentally examines proppant transport and placement in narrow curving channels. Four dimensionless numbers, including the bending angle, distance ratio, Reynolds number, and Shields number, are used to analyze particle placement in curving fractures. The results indicate that non-uniform proppant placement occurs in curving fractures due to the flow direction change and induces an irregular proppant dune. The dune height and covered area are lower than that in the straight fracture. The curving pathway hinders proppant distribution and leads to a dune closer to the inlet. When the distance increases between the inlet and curving section, a large depleted zone in the curving section will be formed and hinder oil and gas flowback. The covered area has negative linear correlations with the Reynolds number and Shields numbers. Four dimensionless parameters are used to develop a model to quantitatively predict the covered area of particle dune in curving fractures.
Keywords: hydraulic fracturing; proppant dune; proppant placement; complicated fracture; multiphase flow (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/7169/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/7169/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:7169-:d:929221
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().