Evaporation, Autoignition and Micro-Explosion Characteristics of RP-3 Kerosene Droplets under Sub-Atmospheric Pressure and Elevated Temperature
Jie Huang,
Hongtao Zhang,
Yong He,
Yanqun Zhu and
Zhihua Wang ()
Additional contact information
Jie Huang: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Hongtao Zhang: Shanghai Institute of Space Propulsion, Shanghai 201112, China
Yong He: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Yanqun Zhu: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Zhihua Wang: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Energies, 2022, vol. 15, issue 19, 1-16
Abstract:
The evaporation, autoignition and micro-explosion characteristics of RP-3 kerosene droplets under sub-atmospheric pressure (0.2–1.0 bar) and elevated temperature (473–1023 K) were experimentally investigated using high-speed camera technology. The results showed that the droplet evaporation rate increased monotonically with increasing temperature and pressure under 573–873 K and 0.2–1.0 bar. The decrease of temperature and pressure was obviously detrimental to the successful autoignition of droplets and increased the ignition delay time. Autoignitions at 0.2 bar were very difficult and required an ambient temperature of at least 973 K, which was about 150 K higher than the minimum ignition temperature at 1.0 bar. Sub-atmospheric pressure environment significantly inhibits the formation of soot particle clusters during the autoignition of droplet. Reducing pressure was also discovered to reduce the likelihood of micro-explosions at 673, 773 and 823 K but increase the bubble growth rate and droplet breakage intensity. Strong micro-explosions with droplet breakage time close to 1 ms were observed at 0.6 bar and 773/823 K, showing the characteristic of bubble inertia control growth.
Keywords: micro-explosion; sub-atmospheric pressure; evaporation; spontaneous ignition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/7172/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/7172/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:7172-:d:928943
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().