Reproducibility of Small-Format Laboratory Cells
Paul-Martin Luc (),
Fabio Buchwald and
Julia Kowal
Additional contact information
Paul-Martin Luc: Electrical Energy Storage Technology, Department of Energy and Automation Technology, Faculty IV, Secr. EMH 2, Technische Universität Berlin, Einsteinufer 11, D-10587 Berlin, Germany
Fabio Buchwald: Electrical Energy Storage Technology, Department of Energy and Automation Technology, Faculty IV, Secr. EMH 2, Technische Universität Berlin, Einsteinufer 11, D-10587 Berlin, Germany
Julia Kowal: Electrical Energy Storage Technology, Department of Energy and Automation Technology, Faculty IV, Secr. EMH 2, Technische Universität Berlin, Einsteinufer 11, D-10587 Berlin, Germany
Energies, 2022, vol. 15, issue 19, 1-12
Abstract:
For the research and development of new battery materials, achieving high reproducibility of the performance parameters in the laboratory test cells is of great importance. Therefore, in the present work, three typical small-format lithium-ion cells (coin cell, Swagelok cell and EL-CELL ECC-PAT-Core) were tested and compared with regard to the reproducibility of their performance parameters (discharge capacity, internal resistance and coulombic efficiency). A design of experiments (DOE) with the two factors separator type and anode–cathode ratio (N/P ratio) was carried out for all cells. For the quality features discharge capacity, internal resistance and coulombic efficiency, the coefficient of variation is used as a measure of reproducibility. The statistical evaluation shows that in 83% of all cases, higher reproducibility is achieved when the Freudenberg separator is used instead of the Celgard separator. In addition, higher reproducibility is achieved in 78% of all cases if the anode and cathode are the same size. A general statement about which test cell format has the highest reproducibility cannot be made. Rather, the format selection should be adapted to the requirements. The examined factors seem to have an influence on the reproducibility but are more insignificant than other still-unknown factors. Since the production of small-format test cells is a manual process, the competence of the assembler seems to prevail. In order to mitigate the influence of as many unknown variables as possible, assembly instructions are proposed for each cell type.
Keywords: coin cell; test cell; reproducibility; design of experiments; cell assembly (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/7333/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/7333/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:7333-:d:934420
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().