Impact of Hydraulic System Stiffness on Its Energy Losses and Its Efficiency in Positioning Mechanical Systems
Piotr Dudziński and
Aleksander Skurjat
Additional contact information
Piotr Dudziński: Department of Off-Road Machine and Vehicle Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Aleksander Skurjat: Department of Off-Road Machine and Vehicle Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Energies, 2022, vol. 15, issue 1, 1-21
Abstract:
Hydraulic steering systems for mechanical devices, for example, manipulators or vehicle steering systems, should be able to achieve high positioning precision with high energy efficiency. However, this condition is very often not met in practical applications. This is usually due to the stiffness of the hydraulic system being too low. As a result, additional corrections are required to achieve the required positioning precision. Unfortunately, this means additional energy losses in the hydraulic control system. In this study, this problem is presented using the example of a hydraulic steering system for an articulated frame steer vehicle. This hydraulic steering system should provide the required directional stability for road traffic safety reasons. So far, this issue, connected mainly with the harmful phenomenon of so-called vehicle snaking behaviour, has not been solved sufficiently practically. To meet the needs of industrial practice, taking into account the current global state of knowledge and technology, Wrocław University of Science and Technology is performing comprehensive experimental and computational studies on the snaking behaviour of an articulated frame steer wheeled commercial vehicle. The results of these tests and analyses showed that the main cause of problems that lead to the snaking behaviour of this vehicle class is the effective torsional stiffness of the hydraulic steering system. For this reason, a novel mathematical model of the effective torsional stiffness was developed and validated. This model comprehensively took into account all important mechanical and hydraulic factors that affect the stiffness of a hydraulic system, resulting in the examined snaking behaviour. Because of this, it is possible at the design stage to select the optimal parameters of the hydraulic steering system to minimise any adverse influence on the snaking behaviour of articulated frame steer wheeled vehicles. This leads to minimising the number of required corrections and minimising energy losses in this hydraulic steering system. The innovative model presented in the article can be used to optimise positioning accuracy, for example, in manipulators and any mechanical system with hydraulic steering of any system of any mechanical parts.
Keywords: hydraulic system stiffness; minimising energy losses; efficiency in positioning; articulated frame wheeled vehicles; snaking (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/294/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/294/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:1:p:294-:d:716246
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().