Selected Parameters of Oat Straw as an Alternative Energy Raw Material
Danuta Proszak-Miąsik,
Wacław Jarecki and
Krzysztof Nowak
Additional contact information
Danuta Proszak-Miąsik: Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Wacław Jarecki: Department of Crop Production, University of Rzeszów, Zelwerowicza 4 St., 35-601 Rzeszów, Poland
Krzysztof Nowak: Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Energies, 2022, vol. 15, issue 1, 1-14
Abstract:
Straw is treated as agricultural waste, and it is available in almost every region of Poland. A total of 30 million tons of straw is produced per year, of which there is a surplus of approximately 13.5 million tons of undeveloped straw. For energy purposes, straw from cereals or rapeseed is most often used. When analyzing scientific publications, it was noticed that, in Poland, large amounts of oat straw are produced, and there is no alternative use for it. Hence, we conducted research to determine the energy value of oat straw. Raw material was obtained from an individual farm from 2018 to 2020. Selected energy parameters for straw burned alone (100%) or co-fired with coal were analyzed in the following weight proportions: 70/30, 80/20, and 90/10 coal/oat straw. It was shown that changing weather conditions, in particular years, had a modifying effect on some of the energy parameters of straw. The calorific value of straw was lower than that of coal, but its impact on environmental pollution turned out to be significantly lower. The difference in combustion heat between coal and straw was 11.74 MJ·kg −1 . Investigations into pollutant concentrations were performed for cubes of compressed straw and hard coal. Mixtures of these fuels were not studied in this part of the work. The combustion of straw resulted in a reduction of harmful NO, NO X , and SO 2 pollutants and an increase in CO compared to coal combustion. As for hydrogen content—it was the highest in carbon and the lowest in straw. In the case of analytical moisture, an inverse relationship was observed. In the case of both coal and straw, the ash content varied throughout the years of research. As the boiler power increased from 5 to 25 kW, the consumption of burned raw material increased significantly. The results indicate that the surplus of oat straw can be rationally used to obtain thermal energy, including co-combustion with coal. This will allow one to avoid burning straw in the fields, which causes great harm to the natural environment.
Keywords: Avena sativa L.; solid biofuel; biomass; straw; co-firing; energy parameters; energy efficiency; calorific value; renewable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/331/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/331/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:1:p:331-:d:717241
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().