Analysis of Hull Shape Impact on Energy Consumption in an Electric Port Tugboat
Wojciech Koznowski and
Andrzej Łebkowski
Additional contact information
Wojciech Koznowski: Department of Ship Automation, Gdynia Maritime University, Morska St. 83, 81-225 Gdynia, Poland
Andrzej Łebkowski: Department of Ship Automation, Gdynia Maritime University, Morska St. 83, 81-225 Gdynia, Poland
Energies, 2022, vol. 15, issue 1, 1-21
Abstract:
The trend to replace internal combustion engines with electric zero-emission drives, visible in the automotive industry, also exists in the shipbuilding industry. In contrary to land vehicles, the requirements for the electric propulsion system of tugs are much greater, which combined with the limited space and energy on board, makes any amount of energy valuable. Strategic changes in the policy of many countries, such as the “Fit for 55” package, introduce plans to significantly reduce CO 2 emissions, which favors the development of alternative drives and their introduction to new areas of operation. This article presents that it is possible to reduce the amount of energy an electric tug spends for movement by applying the Particle Swarm Optimization method to modify the shape of its hull. A statistical analysis of public data was performed to determine the speed profiles of actual port tugs. The Van Oortmerssen method was used to determine the hull resistances of the proposed tug and the impact of the hull shape modification sets on reducing these resistances. Based on the six obtained speed profiles, it was determined that one of the tested variants of modifications made it possible to reduce energy consumption on average by 2.12%, to even 3.87% for one of the profiles, and that some modifications increase energy consumption by even 6.59%.
Keywords: electric propulsion; autonomous tugboat; tugboat with electric drive; energy consumption; zero-emission tugboat (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/339/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/339/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:1:p:339-:d:717553
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().