EconPapers    
Economics at your fingertips  
 

Flushing of Soils Highly Contaminated with Cd Using Various Washing Agents Derived from Sewage Sludge

Barbara K. Klik, Dorota Kulikowska and Zygmunt M. Gusiatin
Additional contact information
Barbara K. Klik: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
Dorota Kulikowska: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
Zygmunt M. Gusiatin: Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland

Energies, 2022, vol. 15, issue 1, 1-15

Abstract: The suitability of sewage-sludge derived washing agents (SS_WAs) (dissolved organic matter DOM; humic-like substances HLS; soluble humic substances SHS), was assessed for removing Cd from highly contaminated (300 mg/kg) sandy clay loam and clay. The soils were remediated via column flushing at two flow rates, 0.5 and 1.0 mL/min. The stability of the flow velocity (FV) depended on the type of SS_WA and decreased in the following order: DOM > HLS > SHS. Cd was most effectively removed during the first hours of flushing, and the process proceeded with a first-order kinetics. The overall process efficiency was higher at flow rate of 1.0 mL/min than at 0.5 mL/min and ranged from 65.7 (SHS) to 75.5% (DOM) for the sandy clay loam and from 64.7% (SHS) to 67.8% (DOM) for the clay. However, all SS_WAs at both flow rates removed the most mobile Cd fraction (F1) with an efficiency above 90%. Flushing improved soil characteristics in terms of the content of organic matter, humic substances and nutrients. Among all SS_WAs, DOM was the most suitable for remediation of highly Cd-contaminated soils due to high efficiency of Cd removal, the high stability of its FV during flushing and the simple manner of DOM recovery from sewage sludge.

Keywords: soil remediation; column; flow rate; kinetics of Cd removal; soil properties; dehydrogenase (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/349/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/349/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:1:p:349-:d:717528

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:349-:d:717528