Experimental Validation of a Hydrostatic Transmission for Community Wind Turbines
Biswaranjan Mohanty and
Kim A. Stelson
Additional contact information
Biswaranjan Mohanty: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Kim A. Stelson: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Energies, 2022, vol. 15, issue 1, 1-15
Abstract:
Hydrostatic transmissions are commonly used in heavy-duty equipment for their design flexibility and superior power density. Compared to a conventional wind turbine transmission, a hydrostatic transmission (HST) is a lighter, more reliable, cheaper, continuously variable alternative for a wind turbine. In this paper, for the first time, a validated dynamical model and controlled experiment have been used to analyze the performance of a hydrostatic transmission with a fixed-displacement pump and a variable-displacement motor for community wind turbines. From the dynamics of the HST, a pressure control strategy is designed to maximize the power capture. A hardware-in-the-loop simulation is developed to experimentally validate the performance and efficiency of the HST drive train control in a 60 kW virtual wind turbine environment. The HST turbine is extensively evaluated under steady and time-varying wind on a state-of-the-art power regenerative hydrostatic dynamometer. The proposed controller tracks the optimal tip-speed ratio to maximize power capture.
Keywords: wind turbine; hydrostatic transmission; hardware-in-the-loop; dynamics and control; maximum power point tracking (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/376/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/376/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:1:p:376-:d:718222
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().