Chlorine Corrosion in a Low-Power Boiler Fired with Agricultural Biomass
Danuta Król,
Przemysław Motyl and
Sławomir Poskrobko
Additional contact information
Danuta Król: Faculty of Energy and Environmental Engineering, Silesian University of Technology, 14-100 Gliwice, Poland
Przemysław Motyl: Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 26-600 Radom, Poland
Sławomir Poskrobko: Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, 15-351 Białystok, Poland
Energies, 2022, vol. 15, issue 1, 1-19
Abstract:
The selection of appropriate heat-resistant materials which are at the same time resistant to atmospheres rich in chlorine and its compounds is one of the most important current construction problems in steel boiler elements when using biomass fuels of agricultural origin. In the research presented here, an area was identified in the furnace of a 10 kW boiler where there was a potential risk of chlorine corrosion. This zone was determined based on numerical analysis of the combustion process; it is the zone with the highest temperatures and where the gas atmosphere conducive to the formation of chlorine corrosion centers. Subsequently, tests were carried out in the process environment of the combustion chamber of a 10 kW boiler (the fuel was barley straw) by placing samples of eight construction materials in a numerically-designated zone. These included samples of steel (coal boiler St41K, heat-resistant H25T and H24JS, and heat-resistant valve 50H21G9N4) as well as intermetallic materials based on phases (FeAl, Fe 3 Al, NiAl, and Ni 3 Al). The samples remained in the atmosphere of the boiler furnace for 1152 h at a temperature of 750–900 °C. After this time, the surfaces of the samples were subjected to SEM microscopy and scanning analysis. The results showed that the St41K boiler steel was not suitable for operation under the assumed conditions, and that a thick layer of complex corrosion products was visible on its surface. The least amount of corrosion damage was observed for the samples of 50H21G9N4 steel and intermetallic materials.
Keywords: chlorine corrosion; domestic boilers; biomass combustion; agricultural biomass; numerical analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/1/382/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/1/382/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:1:p:382-:d:718360
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().