EconPapers    
Economics at your fingertips  
 

Numerical Simulation of Kelvin–Helmholtz Instability and Boundary Layer Stripping for an Interpretation of Melt Jet Breakup Mechanisms

Min-Soo Kim and Kwang-Hyun Bang ()
Additional contact information
Min-Soo Kim: Division of Mechanical Engineering, Korea Maritime and Ocean University, 727 Taejongro, Yeongdogu, Busan 49112, Korea
Kwang-Hyun Bang: Division of Mechanical Engineering, Korea Maritime and Ocean University, 727 Taejongro, Yeongdogu, Busan 49112, Korea

Energies, 2022, vol. 15, issue 20, 1-15

Abstract: The present study is aimed at investigating the ability of a CFD modeling of liquid–liquid jet breakup to resolve the principal mechanisms relevant to jet breakup as well as submillimeter-scale drop size. It is generally known that jet leading edge breaks up by boundary layer stripping (BLS), and jet lateral surface breaks up by Kelvin–Helmholtz instability (KHI). The jet breakup rate as well as the resulting particle size are important parameters that would largely govern the intensity of a steam explosion in severe reactor accidents. First, a two-dimensional simulation of KHI along the melt-liquid coolant interface was performed using the VOF model in ANSYS Fluent with fine meshes as small as 0.02 mm. The dominant wavelength obtained by FFT analysis of calculated melt volume fractions showed that the fastest growing wavelength from the linear analysis of KHI is seen only at the very early development of the instability, and it increases gradually. Second, a three-dimensional simulation of BLS was performed, and the shapes and sizes of the melt particles were obtained. The particle size distributions from KHI and BLS simulations were compared with COLDJET experimental data of Woods metal and water, and it showed that the finer drops of one millimeter or smaller are produced by Kelvin–Helmholtz instability, and the drops of a few millimeters in diameter are mainly produced by boundary layer stripping.

Keywords: fuel–coolant interaction; jet breakup; Kelvin–Helmholtz instability; boundary layer stripping (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/20/7517/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/20/7517/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:20:p:7517-:d:940137

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7517-:d:940137