Safety Issues of a Hydrogen Refueling Station and a Prediction for an Overpressure Reduction by a Barrier Using OpenFOAM Software for an SRI Explosion Test in an Open Space
Hyung-Seok Kang (),
Sang-Min Kim and
Jongtae Kim
Additional contact information
Hyung-Seok Kang: Korea Atomic Energy Research Institute, Daejeon 34057, Korea
Sang-Min Kim: Korea Atomic Energy Research Institute, Daejeon 34057, Korea
Jongtae Kim: Korea Atomic Energy Research Institute, Daejeon 34057, Korea
Energies, 2022, vol. 15, issue 20, 1-21
Abstract:
Safety issues arising from a hydrogen explosion accident in Korea are discussed herein. In order to increase the safety of hydrogen refueling stations (HRSs), the Korea Gas Safety Corporation (KGS) decided to install a damage-mitigation wall, also referred to as a barrier, around the storage tanks at the HRSs after evaluating the consequences of hypothetical hydrogen explosion accidents based on the characteristics of each HRS. To propose a new regulation related to the barrier installation at the HRSs, which can ensure a proper separation distance between the HRS and its surrounding protected facilities in a complex city, KGS planned to test various barrier models under hypothetical hydrogen explosion accidents to develop a standard model of the barrier. A numerical simulation to investigate the effect of the recommended barrier during hypothetical hydrogen explosion accidents in the HRS will be performed before installing the barrier at the HRSs. A computational fluid dynamic (CFD) code based on the open-source software OpenFOAM will be developed for the numerical simulation of various accident scenarios. As the first step in the development of the CFD code, we conducted a hydrogen vapor cloud explosion test with a barrier in an open space, which was conducted by the Stanford Research Institute (SRI), using the modified XiFoam solver in OpenFOAM-v1912. A vapor cloud explosion (VCE) accident may occur due to the leakage of gaseous hydrogen or liquefied hydrogen owing to a failure of piping connected to the storage tank in an HRS. The analysis results using the modified XiFoam predicted the peak overpressure variation from the near field to the far field of the explosion site through the barrier with an error range of approximately ±30% if a proper analysis methodology including the proper mesh distribution in the grid model is chosen. In addition, we applied the proposed analysis methodology using the modified XiFoam to barrier shapes that varied from that used in the test to investigate its applicability to predict peak overpressure variations with various barrier shapes. Through the application analysis, we concluded that the proposed analysis methodology is sufficient for evaluating the safety effect of the barrier, which will be recommended through experimental research, during VCE accidents at the HRSs.
Keywords: hydrogen energy; hydrogen refueling station; damage mitigation wall; separation distance; vapor cloud explosion accident; peak overpressure; CFD; OpenFOAM; XiFoam (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/20/7556/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/20/7556/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:20:p:7556-:d:941262
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().