EconPapers    
Economics at your fingertips  
 

Full-Scale Digesters: An Online Model Parameter Identification Strategy

Luis G. Cortés (), J. Barbancho, D. F. Larios, J. D. Marin-Batista, A. F. Mohedano, C. Portilla and M. A. de la Rubia
Additional contact information
Luis G. Cortés: Departamento de Tecnología Electrónica, Escuela Politécnica, Universidad de Sevilla, 41011 Seville, Spain
J. Barbancho: Departamento de Tecnología Electrónica, Escuela Politécnica, Universidad de Sevilla, 41011 Seville, Spain
D. F. Larios: Departamento de Tecnología Electrónica, Escuela Politécnica, Universidad de Sevilla, 41011 Seville, Spain
J. D. Marin-Batista: Efuels Technologies Ltd., 42-44 Bishopgate, London EC2N 4AH, UK
A. F. Mohedano: Departamento de Ingeniería Química, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain
C. Portilla: Facultad de Minas, Universidad Nacional de Colombia, Robledo, Medellín 050034, Colombia
M. A. de la Rubia: Departamento de Ingeniería Química, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049 Madrid, Spain

Energies, 2022, vol. 15, issue 20, 1-17

Abstract: This work presents a new standard in the model, identification, and control of monitoring purposes over anaerobic reactors. One requirement that guarantees a normal controller operation is for the faculty to measure the data needed periodically. Due to its inability to easily obtain the concentrations of acidogenic bacteria and methanogenic archaea periodically using reliable and commercial sensors, this paper presents an algorithm composed of an asymptotic observer (considering the reaction rates are unknown), aiming to estimate these concentrations. This method represents a significant advantage because it is possible to perform a resource-saving strategy using standard measurements, such as pH or alkalinity, to calculate them analytically in natural environments. Additionally, two yield parameters were included in the original anaerobic model two (AM2) to unlock implementations for a wide range of organic substrates. The static parameter identification was improved using a new method called step-ahead optimization. It demonstrates significant improvements fitting the mathematical model to data until a 78.7 % increase in efficiency (compared with the traditional optimization method genetic algorithm). After the period of convergence, the state observer evidences a small error with a maximum 2 % deviation. Finally, numerical simulations demonstrate the structure’s strengths, which constitutes a significant step in paving the way further to implement feasible, cost-effective controls and monitoring systems in the industry.

Keywords: anaerobic digestion; asymptotically observer; homogeneous reaction systems; step-ahead; volatile fatty acids (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/20/7685/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/20/7685/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:20:p:7685-:d:945839

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7685-:d:945839