EconPapers    
Economics at your fingertips  
 

Investigation on the Propagation Mechanisms of a Hydraulic Fracture in Glutenite Reservoirs Using DEM

Jing Tang, Bingjie Liu and Guodong Zhang ()
Additional contact information
Jing Tang: CNOOC Research Institute Ltd., Beijing 100028, China
Bingjie Liu: Department of Energy and Power Engineering, Tsinghua University, Beijing 100190, China
Guodong Zhang: College of Electromechanical Engineering, Qingdao University, Qingdao 266061, China

Energies, 2022, vol. 15, issue 20, 1-14

Abstract: The geometry heterogeneity induced by embedded gravel can cause severe stress heterogeneity and strength heterogeneity in glutenite reservoirs, and subsequently affect the initiation and propagation of hydraulic fractures. Since the discrete element method (DEM) can accurately describe the inter-particle interactions, the macromechanical behavior of glutenite specimen can be preciously represented by DEM. Therefore, the initiation and propagation mechanisms of hydraulic fractures were investigated using a coupling seepage-DEM approach, the terminal fracture morphologies of hydraulic fractures were determined, and the effects of stress differences, permeability, and gravel strength were studied. The results show that the initiation and propagation of hydraulic fractures are significantly influenced by embedded gravel. In addition, the stress heterogeneity and strength heterogeneity induced by the gravel embedded near the wellbore increase local initiation points, causing a complicated fracture network nearby. Moreover, due to the effect of local stress heterogeneity, gravel strength, and energy concentration near the fracture tip, four interactions of attraction, deflection, penetration, and termination between propagating fractures and encountering gravel were observed.

Keywords: hydraulic fracturing; glutenite; DEM; stress heterogeneity; fracture propagation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/20/7709/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/20/7709/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:20:p:7709-:d:946622

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7709-:d:946622