Biohydrogen—A Green Fuel for Sustainable Energy Solutions
Fariha Kanwal and
Angel A. J. Torriero ()
Additional contact information
Fariha Kanwal: School of Life and Environmental Sciences, Faculty of Science Engineering & Built Environment, Deakin University, Burwood, VIC 3125, Australia
Angel A. J. Torriero: School of Life and Environmental Sciences, Faculty of Science Engineering & Built Environment, Deakin University, Burwood, VIC 3125, Australia
Energies, 2022, vol. 15, issue 20, 1-20
Abstract:
Energy plays a crucial role in the sustainable development of modern nations. Today, hydrogen is considered the most promising alternative fuel as it can be generated from clean and green sources. Moreover, it is an efficient energy carrier because hydrogen burning only generates water as a byproduct. Currently, it is generated from natural gas. However, it can be produced using other methods, i.e., physicochemical, thermal, and biological. The biological method is considered more environmentally friendly and pollution free. This paper aims to provide an updated review of biohydrogen production via photofermentation, dark fermentation, and microbial electrolysis cells using different waste materials as feedstocks. Besides, the role of nanotechnology in enhancing biohydrogen production is examined. Under anaerobic conditions, hydrogen is produced during the conversion of organic substrate into organic acids using fermentative bacteria and during the conversion of organic acids into hydrogen and carbon dioxide using photofermentative bacteria. Different factors that enhance the biohydrogen production of these organisms, either combined or sequentially, using dark and photofermentation processes, are examined, and the effect of each factor on biohydrogen production efficiency is reported. A comparison of hydrogen production efficiency between dark fermentation, photofermentation, and two-stage processes is also presented.
Keywords: energy; photofermentation; dark fermentation; microorganisms; biohydrogen; microbial electrolysis cell (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/20/7783/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/20/7783/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:20:p:7783-:d:948820
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().