EconPapers    
Economics at your fingertips  
 

Large Stress-Gradient Creep Tests and Model Establishment for Red Sandstone Treated at High Temperatures

Xiaopeng Ren, Yajun Xin (), Baoshan Jia, Kun Gao, Xuping Li and Yu Wang
Additional contact information
Xiaopeng Ren: Institute of Mining, Liaoning Technical University, Fuxin 123000, China
Yajun Xin: School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Baoshan Jia: Institute of Mining, Liaoning Technical University, Fuxin 123000, China
Kun Gao: Institute of Mining, Liaoning Technical University, Fuxin 123000, China
Xuping Li: College of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, China
Yu Wang: School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Energies, 2022, vol. 15, issue 20, 1-19

Abstract: Red sandstone samples treated at high temperatures feature complex creep properties. Uniaxial compression tests and the incremental creep tests at different stress gradients were conducted on 10 red sandstone samples of the same specifications divided into five groups on an RLW-2000 triaxial servo rheometer in the laboratory. Relationships of the instantaneous strain and creep strain of red sandstone samples treated at high temperatures with the stress level were explored, and the creep properties and strength of the samples at different temperature gradients were investigated. In addition, the creep failure patterns and failure mechanism of the red sandstone samples were determined, and a creep constitutive model was established for the samples considering the effects of temperature. The conformity between test data and theoretical curves was discussed. Results show that as the stress increases, the instantaneous strain tends to decrease rapidly, slowly, then increase slowly; the creep strain tends to decrease, steadily increase, then increase substantially. At the same stress, as the stress gradient is doubled, the instantaneous strain decreases by 47.45%, and the creep strain decreases by 48.30%. For samples treated at 300~900 °C, the number of stress levels experienced gradually decreases; as the temperature increases, the creep failure strength of samples first increases, then decreases in an arcuate form, and the creep strain tends to decrease, increase, then increase rapidly. In the temperature range, the creep strain at the two stress gradients has a growing difference, with the maximum difference reaching 0.0134%; there is an inflection point at 300 °C in the creep failure strength of samples. At the same stress, the more the stress levels experienced, the lower the creep failure strength, and the temperature, creep failure strength, and creep strain can be characterized by a quadratic polynomial. At 300 °C, mineral particles in samples are sintered and cemented into chains, and there is a significant primary control plane, so the samples show oblique shear failure of a single primary control plane. At 600~900 °C, particles and blocks in samples begin to be sintered and flow, and the cemented chains are broken. Under the condition, the samples mainly show failure dominated by mixed and crossed primary and secondary control planes and crushing failure due to transverse compression. The established Burgers–Kelvin-Temperature (BKT) creep constitutive model is sensitive to changes in temperature; the theoretical curves are consistent with the test data.

Keywords: red sandstone; high-temperature creep; gradient damage; strength characteristic; creep property; failure mode; constitutive model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/20/7786/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/20/7786/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:20:p:7786-:d:948916

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7786-:d:948916