EconPapers    
Economics at your fingertips  
 

On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives

Carlo Bianca ()
Additional contact information
Carlo Bianca: Laboratoire Quartz EA 7393, École Supérieure d’Ingénieurs en Génie Électrique, Productique et Management Industriel, 13 Boulevard de l’Hautil, 95092 Cergy-Pontoise, France

Energies, 2022, vol. 15, issue 21, 1-22

Abstract: Recently, different mathematical frameworks of the thermostatted kinetic theory approach have been proposed for the modeling of complex systems. In particular, thermostatted kinetic frameworks have been employed for the modeling and time evolution of a hybrid energy-multisource network composed of renewable and nonrenewable energy sources, for the construction of the energy storage and for open networks. In the frameworks of the thermostatted kinetic theory approach, the evolution of an energy source and the interactions with other energy sources are modeled by introducing a distribution function and interaction rates. This paper is a survey of the recent proposed frameworks of the thermostatted kinetic theory for the modeling of a hybrid energy-multisource network and reviews the recent proposed models. The paper is not limited to review the existing frameworks, but it also generalizes the mathematical structures proposed in the pertinent literature and outlines future research perspectives and applications of this new approach proposed in 2012.

Keywords: hybrid models; complexity; energy network; smart grid; integro-differential equation; Cauchy problem; initial-boundary-value problem (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/7825/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/7825/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:7825-:d:950229

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7825-:d:950229