EconPapers    
Economics at your fingertips  
 

Geomechanical and Petrophysical Assessment of the Lower Turonian Tight Carbonates, Southeastern Constantine Basin, Algeria: Implications for Unconventional Reservoir Development and Fracture Reactivation Potential

Rafik Baouche, Souvik Sen and Ahmed E. Radwan ()
Additional contact information
Rafik Baouche: Department of Geophysic, Laboratory of Resources Minérals at Energétiques, Faculty of Hydrocarbons and Chemistry (FHC), University M’Hamed Bougara Boumerdes, Boumerdès 35000, Algeria
Souvik Sen: Geologix Limited, Dynasty Building, Andheri Kurla Road, Andheri (E), Mumbai 400059, Maharashtra, India
Ahmed E. Radwan: Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland

Energies, 2022, vol. 15, issue 21, 1-14

Abstract: In this study, we assessed the unconventional reservoir characteristics of the Lower Turonian carbonates from the southeastern Constantine Basin. We integrated petrography, petrophysical, and rock-mechanical assessments to infer formation properties and unconventional reservoir development strategies. The studied fossiliferous argillaceous limestones are rich in planktonic foraminifera, deposited in a calm and low energy depositional condition, i.e., deep marine basinal environment. Routine core analysis exhibits very poor porosity (mostly < 5%) and permeability (<0.1 mD), implying the dominance of nano and microporosity. Micritization and calcite cementation are inferred as the major reservoir quality-destroying diagenetic factors. Based on the wireline log-based elastic properties, the upper part of the studied interval exhibits higher brittleness (BI > 0.48) and fracability (FI > 0.5) indices compared to the lower interval. Borehole breakouts indicate ~N-S SHmax orientation and a normal to strike-slip transitional stress state has been constrained based on a geomechanical assessment. We analyzed safe wellbore trajectory and minimum mud weight requirements to ensure stability in the deviated and horizontal wells required for field development. At the present stress state, none of the fracture orientations are critically stressed. We inferred the fracture reactivation potential during hydraulic stimulation required to bring the tight Turonian limestones into production. Additional pore pressure build-up required to reactivate optimally oriented natural fractures has also been inferred to ensure success of hydraulic fracturing.

Keywords: geomechanical characterization; in situ stress; Lower Turonian; unconventional reservoir; tight carbonates; fracture reactivation; Constantine Basin (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/7901/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/7901/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:7901-:d:952263

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7901-:d:952263