Potential of the Synthetic Fuel Oxymethylene Ether (OME) for the Usage in a Single-Cylinder Non-Road Diesel Engine: Thermodynamics and Emissions
Florian Zacherl,
Christoph Wopper,
Peter Schwanzer and
Hans-Peter Rabl
Additional contact information
Florian Zacherl: Ostbayerische Technische Hochschule (OTH) Regensburg, Laboratory of Combustion Engines and Emission Control, Seybothstraße 2, 93053 Regensburg, Germany
Christoph Wopper: Ostbayerische Technische Hochschule (OTH) Regensburg, Laboratory of Combustion Engines and Emission Control, Seybothstraße 2, 93053 Regensburg, Germany
Peter Schwanzer: Scale MT GmbH, Franz-Mayer-Straße 1, 93053 Regensburg, Germany
Hans-Peter Rabl: Ostbayerische Technische Hochschule (OTH) Regensburg, Laboratory of Combustion Engines and Emission Control, Seybothstraße 2, 93053 Regensburg, Germany
Energies, 2022, vol. 15, issue 21, 1-26
Abstract:
Non-road sectors, such as agriculture and construction machinery, require high energy densities and flexibility in use, which is why diesel engines are mainly used. The use of climate-neutral fuels, produced from renewable energies, such as Oxymethylene Ether (OME) as a diesel substitute, can significantly reduce CO 2 and pollutant emissions in these sectors. In addition to CO 2 neutrality, OME also offers improved combustion characteristics compared to diesel fuel, eliminating the soot–NO x trade-off and thus enabling new opportunities in engine design and calibration. In this paper, the combustion of pure OME on a close-to-production, single-cylinder non-road diesel engine with a pump–line–nozzle injection system is analyzed. A variation of the center of combustion at constant power output was performed for diesel and OME at different operating points. Two injectors were investigated with OME. A study on ignition delay and a detailed thermodynamic analysis was carried out. In addition, the exhaust emissions CO, NO x , V O C , as well as particulate-matter, -number and -size distributions were measured. With OME, a significantly shorter ignition delay as well as a shortened combustion duration could be observed, despite a longer injection duration. In addition, the maximum injection pressure increases. V O C and CO emissions are reduced. Particulate matter was reduced by more than 99% and particle number (>10 nm) was reduced by multiple orders of magnitude. The median of the particle size distribution shifts from 60 to 85 nm (diesel) into a diameter range of sub 23 nm (OME). A significant reduction of NO x emissions with OME enables new degrees of freedom in engine calibration and an efficiency advantage without hardware adaption.
Keywords: Oxymethylene Ether (OME); alternative fuel; diesel; pump–line–nozzle; soot; particles; NOx; pollutants; non-road application (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/7932/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/7932/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:7932-:d:953178
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().