Thermoelectric Micro-Scale Generation by Carbonaceous Devices
Francesco Miccio ()
Additional contact information
Francesco Miccio: Istituto di Scienza e Tecnologia dei Materiali Ceramici CNR, via Granarolo 64, 48018 Faenza, Italy
Energies, 2022, vol. 15, issue 21, 1-10
Abstract:
The paper reports on research focused on the use of largely available carbonaceous materials, such as graphite, carbon black and chars, as thermoelectric materials for micro-generation at high temperature. The key feature is the possibility to ignite the thermoelectric device to self-sustain electric generation. The results of the tests performed with such materials, under both cold and hot conditions, showed that a significant change of the electromotive force, with absolute increase up to three orders of magnitude, occurred under hot conditions with flame irradiation, achieving measured values of electromotive force up to 55 mV, in the best case. Monoliths based on biomass chars and covered with a layer of gunpowder gave rise to similar variation of the Seebeck coefficient, as the case of the flame exposed samples. This result confirms the basic idea of the investigation and the possibility of generating an electrical peak in a self-sufficient combustion thermoelectric device with power up to 1.0 W. A theoretical assessment has been proposed to provide an interpretation of the observed phenomenology, which is related to the non-linear dependence of the material properties on temperature, in particular the Seebeck coefficient and thermal conductivity.
Keywords: microgeneration; solid fuels; combustion; Seebeck effect (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/8105/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/8105/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:8105-:d:959013
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().