Most Searched Topics in the Scientific Literature on Failures in Photovoltaic Installations
Paweł Kut () and
Katarzyna Pietrucha-Urbanik
Additional contact information
Paweł Kut: Department of Heat Engineering and Air Conditioning, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland
Katarzyna Pietrucha-Urbanik: Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland
Energies, 2022, vol. 15, issue 21, 1-14
Abstract:
Photovoltaic installations (PVs) are currently one of the fastest-growing sources of renewable energy. Expanded forms of financial support and higher electricity prices have resulted in a large increase in its installed capacity. PV installations are increasingly being ordered by industry and privates, often for installations capacity of several hundred kilowatts. In addition to the advantages, photovoltaic installations also have drawbacks. One of these is that the increase in the voltage in the power grid leads to the exclusion of individual installations from the grid. An important issue in the operation of photovoltaic installations is also their reliability during their lifetime. The reliability of photovoltaic installations depends on the random nature of the cloud cover as well as the material’s mechanical degradations. This paper presents a literature analysis using Citespace software in terms of reliability. A detailed bibliometric analysis has been performed to outline the main drawbacks of the PV installations cited by researchers. This literature review forms the basis for further analysis. The paper also presents a new approach to implementing the Multiple-Criteria Decision Analysis (MCDA) method for assessing the risk of failure of PV panels. The obtained results showed the main interests of scientists in the field of failure analysis of photovoltaic installations and countries having the largest share in research on this issue. The applied Analytic Hierarchy Process (AHP) analysis enables supporting the process of managing photovoltaic installations by analyzing installation operations in terms of reliability as reliability impacts the profitability of investments and operating costs. The proposed method can be used by the operators of photovoltaic installations or farms.
Keywords: photovoltaic; energy; failure; Analytic Hierarchy Process (AHP); Multiple-Criteria Decision Analysis (MCDA) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/8108/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/8108/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:8108-:d:959055
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().