Arrangement of LEDs and Their Impact on Thermal Operating Conditions in High-Power Luminaires
Antoni Różowicz,
Henryk Wachta,
Krzysztof Baran (),
Marcin Leśko and
Sebastian Różowicz
Additional contact information
Antoni Różowicz: Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Str., 25-314 Kielce, Poland
Henryk Wachta: Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
Krzysztof Baran: Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
Marcin Leśko: Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
Sebastian Różowicz: Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Str., 25-314 Kielce, Poland
Energies, 2022, vol. 15, issue 21, 1-17
Abstract:
Solid-state light sources are currently the fastest-growing group of light sources, replacing the previously used discharge and incandescent light sources. Thermal operating conditions of LEDs (Light Emitting Diode) play an important role in t maintaining long service life and constancy of luminous-electrical parameters. In the field of illumination, the service life parameter of light sources is important for the costs of maintenance of the illumination system, while the maintenance of the value of certain light parameters over time, such as luminous flux, color temperature and color rendering index, is related to the aesthetic effect of the illumination. In addition, limiting the junction temperature of solid-state light sources is particularly important in high-power luminaires dedicated to flood illumination. One of the elements shaping the thermal operating conditions of multi-source LED luminaires is the number of luminaires used, their arrangement, and the distance between LEDs installed on the MCPCB (Metal Core Printed Circuit Board) substrate. This article presents the results of simulation studies, realized using CFD (Computational Fluid Dynamics) software, where the temperature distribution and the junction temperature of the LED panel were determined for different configurations and distances between the LEDs. The results obtained were analyzed and conclusions were drawn based on them. Thermal tests performed and presented in the article cover scientific issues related to shaping the temperature distribution of the LED panel. They make it possible to determine the influence of thermal couplings between the sources, related to their number, distance and the value of the forward current, on the final temperature of the LED junction temperature. The presented research results may constitute auxiliary materials for designers of lighting luminaires, especially high-power luminaires, where a large number of high-power LED sources are installed in close proximity.
Keywords: floodlighting; LED panel; thermal modeling; junction temperature; CFD (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/8142/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/8142/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:8142-:d:959731
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().