Speed Control of Magnetic Drive-Trains with Pole-Slipping Amelioration
Xiaowen Liao (),
Chris Bingham () and
Tim Smith
Additional contact information
Xiaowen Liao: Guangdong University of Petrochemical Technology (GDUPT), Maoming 525000, China
Chris Bingham: School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
Tim Smith: School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
Energies, 2022, vol. 15, issue 21, 1-14
Abstract:
The paper introduces new techniques to reduce the potential for pole-slipping induced by control systems and presents a low-cost pole-slipping detection and recovery scheme for magnetic drive-trains (MDTs). For the first time, the paper shows that a combination of electromagnetic and load-torque excitations which individually are not greater than the maximum coupling torque can initiate pole-slipping. For applications where acceleration feedback is unavailable, the motor-side inertia is virtually increased with a tracking differentiator to provide feedback of acceleration. Subsequently, controller design and parameter optimization are discussed. Experimental measurements on a custom test facility verify the presented principles that low-bandwidth controller designs with low inertia ratios can accommodate a wider range of on-load startup torque and load-torque disturbances without pole-slipping. To address overload issues, a pole-slipping detection method based on the kurtosis of electromagnetic torque and a recovery strategy based on converting the state of pole-slipping into that of on-load startup are presented. Experimental results demonstrate that detecting slip anomalies without load-side information, and recovery from pole-slipping without auxiliary mechanical devices are both feasible.
Keywords: magnetic drive-trains; dynamic analysis; speed control; pole-slipping detection; recovery (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/8148/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/8148/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:8148-:d:959840
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().