Exergy, Economic and Environmental Analysis of a Direct Absorption Parabolic Trough Collector Filled with Porous Metal Foam
Murtadha Zahi Khattar and
Mohammad Mahdi Heyhat ()
Additional contact information
Murtadha Zahi Khattar: Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran
Mohammad Mahdi Heyhat: Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran
Energies, 2022, vol. 15, issue 21, 1-17
Abstract:
A direct absorption parabolic trough solar collector (DAPTC) integrated with porous foam as a volumetric absorber has the potential to be applied as an energy conversion integrant of future renewable energy systems. The present study comprehensively analyzes a DAPTC in terms of exergy, economic, and environmental analysis for different porous configuration inserts in the absorber tube. Ten different arrangements of porous foam are examined at several HTF flow rates (40–120 L/h) and inlet temperatures (20–40 °C). The exergy efficiency, entropy generation, Bejan number, and pumping power are investigated for all cases. Obtained results indicate that fully filling the absorber tube with porous foam leads to a maximum exergy efficiency of 20.4% at the lowest inlet temperature (20 °C) and highest flow rate (120 L/h). However, the Bejan number reaches its minimum value due to the highest pumping power in this case. Consequently, all mentioned performance parameters should be considered simultaneously. Finally, the environmental and economic analyses are conducted. The results show that fully filling the absorber tube with porous foam reflects the best heat production cost, which can reduced the embodied energy, embodied water, and CO 2 emission by 559.5 MJ, 1520.8 kL, and 339.62 kg, respectively, compared to the base case at the flow rate of 120 L/h.
Keywords: parabolic trough collector; direct absorption; metal foam; energy and exergy analysis; heat transfer enhancement; different arrangements (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/8150/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/8150/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:8150-:d:960235
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().