Optimal Design of Asymmetric Rotor Pole for Interior Permanent Magnet Synchronous Motor Using Topology Optimization
Huihuan Wu,
Shuangxia Niu () and
Weinong Fu
Additional contact information
Huihuan Wu: Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Shuangxia Niu: Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Weinong Fu: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Energies, 2022, vol. 15, issue 21, 1-15
Abstract:
As asymmetric interior permanent magnet synchronous motor (AIPMSM) has excellent performance but complicated topological structure, a novel high-resolution encoding and edge smoothing method is proposed for topology optimization of the asymmetric rotor of interior permanent magnet synchronous motor (IPMSM) in this study. This method aims to solve complex electromagnetic design problems with time-dependent performance through a multi-objective genetic algorithm (MOGA) integrated with a high-resolution encoding and edge smoothing method. The complex structure is represented by a high-resolution image-like matrix and then vectorized by the edge smoothing method. Therefore, the commonly used discrete binary encoded variables related to the finite element (FE) model are replaced with a vectorized topological structure and other control variables. In this sense, high-resolution matrix and edge smoothing methods are used for the first time to represent the rotor topology of AIPMSMs. Compared with the traditional topology optimization method, the proposed method has the advantage of expressing more complex and vectorized topological structures; meanwhile, the obtained performance is accurate and trustworthy using conventional FE simulation. Numerical results show that a stable convergence is achieved with the avoidance of checkerboards and material overlapping. It is shown that the proposed method can find solutions with better performances, in comparison with the reference model.
Keywords: asymmetric rotor; IPMSM; topology optimization; genetic algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/8254/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/8254/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:8254-:d:963790
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().