A Numerical Investigation of the Energy Efficiency Enhancement of Oscillating Water Column Wave Energy Converter Systems
Shayan Ramezanzadeh,
Murat Ozbulut () and
Mehmet Yildiz ()
Additional contact information
Shayan Ramezanzadeh: Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul 34956, Turkey
Murat Ozbulut: Naval Architecture and Marine Engineering Department, Faculty of Engineering, Piri Reis University, Istanbul 34940, Turkey
Mehmet Yildiz: Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul 34956, Turkey
Energies, 2022, vol. 15, issue 21, 1-20
Abstract:
This work focuses on the geometry effects over the performance of oscillating water column (OWC)-type wave energy converter (WEC) systems and searches for the OWC geometries that enhance the energy efficiencies under the same wave conditions. To analyze the hydrodynamic performances of the WEC systems, an in-house smoothed particle hydrodynamics (SPH) code based on weakly compressible fluid approach is utilized. The energy efficiency enhancement studies of the determined OWC device are carried out with a two-step geometry modification procedure. The first step starts with the validation of the free-surface elevation and orbital velocity time histories. Then, a three-by-three simulation matrix that depends on the geometrical design parameters of chamber length and front wall draft is run at three different wave conditions, and the OWC geometry that produces the maximum energy efficiency is determined. In the second step, the corner regions of the obtained optimal geometry are chamfered, and another simulation matrix is tested at the wave condition that yields maximum wave energy. It is observed in this step that the energy efficiency index can still be improved by 4.3% by only chamfering the back face of the OWC chamber. To scrutinize the physical grounds of this increase, the correlation between the time-averaged vorticity and energy efficiency is presented. Finally, the performance of the best configuration is also examined in three different wave periods, where the suggested geometry shows better performance with respect to base geometry results in all wave conditions.
Keywords: wave energy; free-surface hydrodynamics; wave energy converters; energy efficiency; SPH method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/8276/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/8276/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:8276-:d:964298
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().