EconPapers    
Economics at your fingertips  
 

Analysis of Energy Dissipation on the Sealing Surface of Premium Connection Based on a Microslip Shear Layer Model

Yang Yu, Zhan Qu (), Yihua Dou () and Yinping Cao
Additional contact information
Yang Yu: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
Zhan Qu: College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
Yihua Dou: Mechanical Engineering College, Xi’an Shiyou University, Xi’an 710065, China
Yinping Cao: Mechanical Engineering College, Xi’an Shiyou University, Xi’an 710065, China

Energies, 2022, vol. 15, issue 22, 1-16

Abstract: In high production gas wells, premium connections are subject to alternating loads and vibration excitation due to the change of fluid pressure exerted on the tubing string. The energy dissipation on the sealing surface of premium connections affects the sealing performance of premium connections. The present study proposes a new energy dissipation analysis method for the sealing performance of premium connections using a microslip shear layer mode, a novel technique to overcome and improve the limitations of existing analysis method of premium connections. In this paper, based on a microslip shear layer model, a vibration equilibrium equation of premium connection was established with the constraints of the taper of the sealing surface, the thread, and the torque shoulder. Then, the control equilibrium equations of the stick and microslip were derived, and the critical microslip tangential force and force–displacement hysteresis curves under different interface parameters were obtained by solving the equilibrium equations. The influence of different interface parameters on the energy dissipation of premium connection was discussed by using a standardized regression coefficient method. It was found that the friction coefficient influenced both the minimum and maximum microslip tangential forces, while the shear layer stiffness influenced only the minimum microslip tangential force. The greater the stiffness of the shear layer, the smaller the minimum microslip tangential force and the relative displacement of the contact surface, which made it easier to generate energy dissipation. The influence of the friction coefficient on energy dissipation was much greater than the stiffness of the shear layer. There was positive correlation between the friction coefficient and energy dissipation. While, there was a negative correlation between the stiffness of shear layer and energy dissipation. The results can provide a theoretical guide for micro sealing failure mechanism of premium connections under dynamic loads and expand the analysis method of metal seals.

Keywords: energy dissipation; premium connection; shear layer model; microslip; gas wells (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8400/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8400/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8400-:d:968794

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8400-:d:968794