EconPapers    
Economics at your fingertips  
 

Research on Performance Optimization of Gravity Heat Pipe for Mine Return Air

Yu Zhai (), Xu Zhao and Zhifeng Dong
Additional contact information
Yu Zhai: School of Mechanical Electronic and Information Engineering, China University of Mining & Technology—Beijing, Beijing 100083, China
Xu Zhao: Beijing Zhongkuang Celebrate Energy Saving Technology Co., Ltd., Beijing 100085, China
Zhifeng Dong: School of Mechanical Electronic and Information Engineering, China University of Mining & Technology—Beijing, Beijing 100083, China

Energies, 2022, vol. 15, issue 22, 1-14

Abstract: The mine return air flow has the characteristics of basically constant temperature and humidity all year round and is a high-quality waste heat resource. Its direct discharge not only wastes energy but also causes environment pollution. It has important economic value and application prospect to solve the problem of shaft antifreeze using new technology to recover the waste heat of mine return air. Gravity heat pipe is widely used in the heat recovery of mine return air. Its heat transfer process is a complex process with multiple parameters. The current research focuses on the influence of a single factor on heat transfer, which has many limitations. To analyze the effects of different parameters on the heat recovery effect of gravity heat pipe in mine return air and to optimize heat pipe heat exchanger parameters in the heat exchange system, mathematical models of gas–water countercurrent heat and mass transfer, entransy dissipation and exergy efficiency were established in this paper, based on the entransy dissipation theory. Under the condition of the given initial parameters, the effects of different parameters on the dimensionless factor, β , of heat transfer, total heat transfer, and entransy dissipation thermal resistance were analyzed. The experimental and calculation results show the entransy dissipation theory can be used to evaluate the heat transfer performance of the gravity heat pipe. When the entransy dissipation thermal resistance was minimum, the heat transfer performance was optimal. During the heat transfer process between the mine return air and the gravity heat pipe with high humidity under a given working condition, increasing the Reynolds number was beneficial to increase the heat transfer dimensionless factor, β .

Keywords: gravity heat pipe; heat exchange unit; heat transfer; entransy dissipation thermal resistance; parameter optimizing; mine return air; waste heat resource (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8449/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8449/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8449-:d:970219

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8449-:d:970219